Afterschool & the Next Generation Science Standards: Where to start?

Today's Speakers

Melissa Ballard

Research Associate, STEM Afterschool Alliance

Katelyn Wamsted

Program Director Girlstart

The Next Generation Science Standards

- Great need for new standards
- Conceptual shifts
- Performance expectations not curriculum
- Consistent with Common Core
- Diverse populations & underserved students

Online version from NSTA here: <u>http://standards.nst</u> <u>a.org/Standards/Acc</u> <u>essStandardsByTopic.</u> <u>aspx</u>

Development Process

- National Academy of Sciences, American Association for the Advancement of Science (AAAS) & the National Science Teachers Association (NSTA), managed by Achieve
- A Framework for K-12 Science Education
- 26 lead states, 40 writers
- Teachers; college/university faculty; science & engineering, workforce experts
- Twice open to public feedback

The NRC's Framework

Free online: www.nap.edu/catalog.php?record_id=13165

- Science education should resemble the way scientists actually work and think
- Instruction should reflect research on learning
- Importance of building coherent understandings over time
 Concepts

Core Ideas

NGSS Practices

http://standards.nsta.org/Standards/PracticesFull.aspx

Scientific inquiry + Engineering design

- 1. Asking Questions, Defining Problems
- 2. Planning & Carrying Out Investigations
- Analyzing & Interpreting Data
- 4. Developing & Using Models

- Constructing Explanations, Designing Solutions
- 6. Engaging in Argument from Evidence
- 7. Using Mathematics and Computational Thinking
- 8. Obtaining, Evaluating & Communicating Information

NGSS: Disciplinary Core Ideas

http://standards.nsta.org/Standards/DisciplinaryCoreIdeasTop.aspx

- Reduces range of content, deepens learning
- Build coherently K-12, every single year

Physical Science

- Matter
- Force & Motion
- Energy
- Waves

Earth & Space Science

- Earth & the Universe
- Earth's Systems
- Human Impacts

Life Science

- Organisms
- Ecosystems
- Heredity
- Evolution

Engineering, Tech & Applications

- Engineering Design
- Links between engineering, tech, science & society

NGSS Crosscutting Concepts

http://standards.nsta.org/Standards/CrosscuttingConceptsFull.aspx

- 1. Patterns
- 2. Cause and effect
- 3. Scale, proportion and quantity
- 4. Systems and system models
- 5. Energy and matter
- 6. Structure and function
- 7. Stability and change

The Standards

http://standards.nsta.org/Standards/AccessStandardsByTopic.aspx

3-PS Forces & Interactions

- **1. Plan and conduct an investigation** to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.
- 2. Make observations and/or measurements of an object's motion to provide evidence that a pattern can be used to predict future motion.
- 3. Ask questions to **determine cause and effect relationships** of electric or magnetic interactions between two objects not in contact with each other.
- **4. Define a simple design problem** that can be solved by applying scientific ideas about magnets.

The Standards

3-PS Forces & Interactions

- 3. Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.
- Electric force on hair from an electrically charged balloon and the electrical forces between a charged rod and pieces of paper
- Magnetic force between two permanent magnets, electromagnet and steel paperclips...
- **Cause and effect** how the distance between objects affects strength and how the orientation of magnets affects the direction.

	3. Forces and Interactions			
Assessment	In to provide evidence of the effects of balance ement: Examples could include an unbalanced force on one side produce any motion at all.] [Assessment Boundary: Assessment ide quantitative force size, only qualitative and relative. Assessment statements of an object's motion to provide evid statement: Examples of motion with a predictable pattern could in see-saw.] [Assessment Boundary: Assessment does not include the e and effect relationships of electric or magnet other. [Clarification Statement: Examples of an electric force en a charged rod and pieces of paper; examples of a magnetic for ind steel paperclips, and the force exerted by one magnet versus the distance between objects affects strength of the force and h Assessment is limited to forces produced by objects that can be plate to be the solved by applying scientific ideas g a latch to keep a door shut and creating a device to keep two	alanced and unbalanced forces on the one side of a ball can make it start moving; and, balanced assment is limited to one variable at a time: number, size, assessment is limited to gravity being addressed as a force de evidence that a pattern can be used to a could include a child swinging in a swing, a ball rolling include technical terms such as period and frequency.] magnetic interactions between two ic force could include the force on hair from an electrically netic force could include the force between two permanent : versus the force exerted by two magnets. Examples of the and how the orientation of magnets affects the direction can be manipulated by students, and electrical interactions is ideas about magnets.* [Clarification Statement: p two moving objects from touching each other.]		
	The performance expectations above were develo	ped using the following elements from the NRC document A Fran	nework for K-12 Science Education:	
Foundations	 Asking Questions and Defining Problems Asking questions and defining problems in grades 3–5 builds on grades K–2 experiences and progresses to specifying qualitative relationships. Ask questions that can be investigated based on patterns such as cause and effect relationships. (3-PS2-3) Define a simple problem that can be solved through the development of a new or improved object or tool. (3-PS2-4) Planning and Carrying Out Investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions. Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. (3-PS2-1) Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution. (3-PS2-2) Connections to Nature of Science Science Knowledge is Based on Empirical Evidence Science investigations Use a Variety of Methods Science investigations use a variety of methods, tools, and techniques. (3-PS2-1) 	 Disciplinary Core Ideas PS2.A: Forces and Motion Each force acts on one particular object and has both strength and a direction. An object at rest typically has multiple forces acting on it, but they add to give zero net force on the object. Forces that do not sum to zero can cause changes in the object's speed or direction of motion. (Boundary: Qualitative and conceptual, but not quantitative addition of forces are used at this level.) (3+PS2-1) The patterns of an object's motion in various situations can be observed and measured; when that past motion exhibits a regular pattern, future motion can be predicted from it. (Boundary: Technical terms, such as magnitude, velocity, momentum, and vector quantity, are not introduced at this level, but the concept that some quantities need both size and direction to be described is developed.) (3+PS2-2) Connections to Engineering, Technology, and Applications of Science Interdependence of Science, Engineering, and Technology Scientific discoveries about the natural world can often lead to new and improved technologies, which are developed through the engineering design process. (3-PS2-4) 		
	Connections to other DCIs in third grade: N/A Articulation of DCIs across grade-levels: K.PS2.A (3-PS2-1); K.PS2.B (3-PS2-1); K.PS3.C (3-PS2-1); K.ETS1.A (3-PS2-4); 1.ESS1.A (3-PS2-2); 4.PS4.A (3-PS2-2); 4.ETS1.A (3-PS2-2); 4.			
Connections	PS2-4); 3-PS2-6 (3-PS2-1); MS-PS2-A (3-PS2-2); MS-PS2-B (3-PS2-3), (3-PS2-4); MS-ESS1.B (3-PS2-1), (3-PS2-2); MS-ESS2.C (3-PS2-1) Common Core State Standards Connections: ELA/Literacy – RI.3.1 Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. (3-PS2-1), (3-PS2-3) RI.3.3 Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to			

time, sequence, and cause/effect. (3-PS2-3)

What's next for schools?

NGSS will require <u>big changes</u> in K-12 classrooms!

- Preservice teacher education
- Professional development for current teachers
- Finding classroom time
- Curriculum
- Assessments

NSTA playing a supportive role in implementation.

What Afterschool Offers

- Hands-on, project-based learning
- Expertise with inquiry and engineering design
- Additional time, space to extend classroom learning
- Flexible environment to try new techniques & activities
- Connection to careers, access to mentors
- Topics outside of content areas
- Opportunities for pre-service & practicing teachers to improve classroom teaching techniques, management styles, & confidence

Who we are...

Founded in Austin, Texas, Girlstart is the longest-serving, standalone, community-based informal STEM education nonprofit in the nation exclusively dedicated to empowering and equipping girls in STEM through year-round STEM educational programming.

2013 GIRLSTART BY THE NUMBERS

WWW.GIRLSTART.ORG

Acumen

Demonstrated that they understand the scientific method and the engineering design process.

Interest

<u>B</u>G %

Responded positively to the statement 'I want to try more science activities.'

Confidence

Expressed intent to attend college after high school.55% would be first generation college students.

Responded positively to the statement:

activity does not work on the first try'.

'I understand that it is okay if my Girlstart

Realized after participating that they use science outside of school.

Demonstrated the awareness that doing well in STEM at school means that they are more likely to get into college.

Demonstrated the awareness that doing well in STEM at college means that they are more likely to have a better career.

Giple

Programs

Reported that after participating in Girlstart, STEM careers seem more interesting to them.

Indicated an interest in entering a STEM career.

STEM CREW

Unt ot

CUMEN IND

Districts

Girlstart After School

Girlstart After School seeks to enhance and supplement girls' science learning in the classroom through engaging activities that introduce important STEM concepts in a hands-on and informal environment.

Girlstart & NGSS

Girlstart participates in the national conversation about OST programming, and we conduct some of our programs on a national level.

We believe it is important to demonstrate our commitment to high quality informal STEM education.

General Reasons to Align

- Opportunity to partnership with schools
- Strengthen current relationships
- Reflect current trends & standards in science education
 - May resonate with funders or potential STEM-rich partners

Best Practices for Partnering with Schools

- Communication plan
- School liaison
- Reporting
- Share how you support formal education

Communication Plan

- Letter of Understanding

 Defines responsibilities & expectations
- Weekly Email
- Weekly Blogs
- Semester Newsletter
- Yearly By the Numbers

AFTER SCHOOL 'TO GO' WEEK 6

Exploring Water Pollution

During the sixth week of Girlstart After School 'to Go,' the girls learned how our every day actions can affect our water supply. They created a sample of polluted water by adding materials that represented trash left behind, run off from oil in parking lots and fertilizers, chemicals poured down the drain and more.

WWW.GIRLSTART.ORG

Acumen

Demonstrated that they understand the scientific method and the engineering design process.

Interest

Responded positively to the statement 'I want to try more science activities.'

Confidence

Expressed intent to attend college after high school.55% would be first generation college students.

Responded positively to the statement:

activity does not work on the first try'.

'I understand that it is okay if my Girlstart

they use science outside of school.

Realized after participating that

Demonstrated the awareness that doing well in STEM at school means that they are more likely to get into college.

Demonstrated the awareness that doing well in STEM at college means that they are more likely to have a better career.

GTPIC

Programs

Reported that after participating in Girlstart, STEM careers seem more interesting to them.

Indicated an interest in entering a STEM career.

CUMEN INA

EST /

Canyon Formation

Lesson Activity Overview Lessons written in 5E	TEKS Correlations with Girlstart Lessons	Next Generation Science Standards (NGSS)	
esson 2: Canyon Formation	4.7B) Observe and identify slow	4-ESS2 Earth's Systems	
tudents create models of	changes to Earth's surface caused	Performance Expectations:	
edimentary layers that	by weathering, erosion, and	4-ESS2-1. Make observations	
epresent millions of years of	deposition from water, wind, and	and/or measurements to provide	
me. Students observe the	ice	evidence of the effects of	
ffects of wind and ice on a	(5.7B) Recognize how landforms	weathering or the rate of erosion	
nodel to determine if these	such as deltas, canyons, and sand	by water, ice, wind, or vegetation	
press can create canyons, and	dunes are the result of changes to	Science and Engineering	
ien simulate and calculate the	Earth's surface by wind, water, and Practices:		
mount of time it takes for a	ice.	 Planning and carrying out 	
ver to form a canyon.	(4.2), (5.2) The student uses investigations		
	scientific methods during	Disciplinary Core Ideas:	
	laboratory and outdoor	• ESS2.A: Earth Materials and	
	investigations.	Systems	
	(4.3), (5.3) The student uses critical	Cross cutting Concepts:	
	thinking and scientific problem	• Patterns	
	solving to make informed	Cause and Effect	
	decisions.		

Canyon Formation

- Students create models of sedimentary layers that represent millions of years of time.
- Students observe the effects of wind & ice on a model to determine if these forces can create canyons.
- Then they simulate & calculate the amount of time it takes for a river to form a canyon.

Observations

400 million years ago	
Color of sand:	
Type of environment that existed:	
200 million years ago	
Color of sand:	
Type of environment that existed:	
100 million years ago	
Color of sand:	
Type of environment that existed:	
50 million years ago	
Color of sand:	
Type of environment that existed:	

Sedimentary Layers:

- Record the information on the left side of the table.
- Make a sketch of the model on the right side of the table.

Career Connection

A **geomorphologist** studies landforms and the processes that shape them.

Scientists in this field seek to understand why landscapes look the way they do, to understand landform history and dynamics, and to predict future changes through a combination of field observations, physical experiments, and modeling.

Biofuels

Lesson Activity Overview	TEKS Correlations with Girlstart	Next Generation Science Standards	
Lessons written in 5E	Lessons	(NGSS)	
sson 7: Biofuels	(5.7C) Identify alternative energy	4-ESS3 Earth and Human Activity	
udents define nonrenewable sources and participate in a nulation to demonstrate how they ll not last forever. Students nduct investigations to determine e types of plant products that can nerate biofuels by combining yeast th corn products to produce nanol, a source of energy obtained om recently harvested plant aterials. Students complete a card tivity to identify the different types d characteristics of renewable sources.	resources such as wind, solar, hydroelectric, geothermal, and biofuels. (4.7C) Identify and classify Earth's renewable resources, including air, plants, water, and animals; and nonrenewable resources, including coal, oil, and natural gas; and the importance of conservation (4.2), (5.2) The student uses scientific methods during laboratory and outdoor investigations.	 Performance Expectations: 4-ESS3-1 Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment. Science and Engineering Practices: Constructing Explanations and Designing Solutions Disciplinary Core Ideas: ESS3.A: Natural Resources ETS1.B: Designing Solutions to Engineering Problems Cross cutting Concepts: Cause and Effect 5-PS1 Matter and Its Interactions Performance Expectations: 5-PS1-4 Conduct an investigation to determine whether the mixing of two or more substances results in new substances. Science and Engineering Practices: Planning and Carrying Out Investigations Disciplinary Core Ideas: PS1.B: Chemical Reactions Cross cutting Concepts: Cause and Effect 	

Biofuels

- Students define nonrenewable resources and participate in a simulation to demonstrate how they will not last forever.
- Students conduct investigations to determine the types of plant products that can generate biofuels by combining yeast with corn products to produce ethanol, a source of energy obtained from recently harvested plant materials.
- Students complete a card activity to identify the different types and characteristics of renewable resources.

Biofuels

Observations

www.girlstart.org

1.00				
Bottle	prediction	Observa		
Water and yeast		Time:	Time:	• P w
7		Time:	Time:	b
Water, yeast, and corn syrup				• D h
		Time:	Time:	a
Water, yeast, and bran				0
			าสแหน	

- Predict what you think will happen with each bottle.
- Draw and label what
 happens to each bottle
 as you make
 observations.

Career Connection

Biofuel engineers work to find uses for fuels derived from plant materials and animal waste.

They design and devise tools, processes, and procedures with which to generate biofuel such as ethanol and biodiesel, for the purpose of powering automobiles, heating homes, and generating electricity.

Opportunities for Pre-Service Teachers

- Improve classroom management skills
- Learn & modify teaching style
- Gain curriculum writing experience
- Hands-on work experience in an educational setting
- Deliver fun, informal STEM curriculum
- Opportunities to work with formal educators

The STEM CREW facilitates Girlstart's afterschool and summer programs.

Girlstart partners with the <u>UTeach program</u> at the University of Texas at Austin, which provides interns for their <u>STEM CREW</u>.

Role Models

- Make it personal
- Use kid-friendly language
- Share academic and/or career path
- Share challenges and triumphs
- Show how STEM professionals can change the world

Additional Resources

- Girlstart 'For Educators': www.girlstart.org
- Project: www.txgcp.org
- SciGirls: http://pbskids.org/scigirls
- Engineer Your Life: <u>http://www.engineeryourlife.org/</u>
- Engineer Girl: <u>http://www.engineergirl.org/</u>
- Engineering, Go For It: <u>http://egfi-k12.org/</u>
- Design Squad: <u>http://pbskids.org/designsquad/</u>
- Dot Diva: <u>http://dotdiva.org</u>
- How to Smile: <u>http://howtosmile.org</u>
- NCWIT: <u>http://www.ncwit.org</u>

Read <u>Girlstart's profile</u> for information on demographics, outcomes, & more!

Curriculum Resources

www.afterschoolalliance.org/STEM-RESOURCES.CFM

Afterschool

Alliance

NASA's Afterschool Universe

Train your staff to facilitate STEM! <u>www.click2sciencepd.org</u>

Inspire a girl to change the world. www.techbridgegirls.org/index.php?id=21

Developed by the Museum of Science, Boston

OTHERS: Exploratorium <u>AfterSchool Activities</u> Exploratorium <u>EXPLORE</u>

Will my state adopt?

Rhode Island Kentucky Kansas Maryland Vermont California Delaware Washington D.C. Nevada Oregon Illinois Aftérschool

Alliance

Possible Next Steps

- Keep learning!
- Find out what the district and schools are doing
- Improve relationships & communication with schools
- Align curriculum
- Cultivate partnerships with other science education organizations

Thanks for attending!

Melissa Ballard

Afterschool Alliance mjballard@afterschoolalliance.org www.afterschoolalliance.org/STEM

Katelyn Wamsted

Girlstart katelyn@girlstart.org www.girlstart.org

